
Item-based Incremental Top-K Recommendation System 
Aritra Kumar Lahiri 

School of Computing, Informatics and Decision Systems Engineering 

Arizona State University 

Tempe, US 

aklahiri@asu.edu 

 

Abstract—The rise of e - commerce and the rapid 

growth of the World Wide Web has led to the 

growth of recommendation system. In this project 

we have proposed and developed an incremental 

approach to Collaborative filtering Algorithm for 

predicting binary ratings of an item by a user. The 

algorithm works by predicting the rating of  top k 

restaurants with its place and type of cuisines. This 

algorithm was implemented as a web service for 

restaurant recommender.  

Keywords — Collaborative filtering algorithm, Item 

based recommendation, Jaccard Index, Cosine 

similarity index, user based recommendation, 

binary rating based recommendation. 

 

I. INTRODUCTION 

Item-based incremental Top-K recommendation 

system is the approach that we initiated to 

implement and design a restaurant recommendation 

system. Recommender systems has emerged very 

popular in recent years, and has been in applied to 

various applications and already existing system. 

The most popular examples of such system are 

promoted by Amazon and various other website, 

movies by Netflix, music by Spotify and Youtube, 

news, books, search queries, social tags and 

products in general. However, there are also 

recommender systems for experts, jokes, 

restaurants, financial services, and Twitter 

followers. A system could produce a list of 

recommendations  through combination of content 

or content-based filtering or an one of them. Here 

the Collaborative filtering approach are based on 

filtering a large amount of information based on 

user's behaviours, preferences and predicting back 

to the user based on the recommended items that 

people with similar preferences liked in the past. 

On the other hand Content-based recommendation 

approach is based on the filtering method of 

recommending items to the user similar to the ones 

the user preferred in the past These approaches are 

often combined in Hybrid Recommender Systems. 

 

II. PROBLEM DESCRIPTION AND SOLUTION 

 

The problem that we have worked upon is 

developing an application that can efficiently 

recommend a set of top - k restaurant. We 

generated a similarity matrix on the basis of user 

rating and cuisine. We have collected the dataset 

from UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets/Restaurant+

%26+consumer+data) and used this large dataset so 

that we can develop the application more 

efficiently and can recommend according to the 

following parameter -  

1. The reviews and rating of restaurant from past 

users’ predict user recommendation for restaurant. 

2. The type of cuisine a user wants.   

 

A. Algorithm implementation  

 

The algorithm uses an incremental collaborative 

filtering technique. In the building phase of the 

model, for each item j, the k most similar items{ j1, 

j2, ..., jk }are computed, and their corresponding 

similarities {sj1 ,sj2 ,...,sjk} are recorded. Now, for 

each user that has viewed a set (i.e., basket) U of 

items, this information is used to compute the top-

K recommended items. This proposed approach 

will analyze the user-item matrix and determines 

the relations among different items. These results 

help in computing the list of top-K 

recommendations. This approach leads the users to 

view the items similar to those they have already 

viewed.Thus it will produce faster recommendation 

engines since there is no need of computation of  

the neighbourhood of similar users when 

suggesting a recommendation. 

We implemented the algorithm to maintain a “co-

concurrency matrix”. This is an item x item matrix 

which is incrementally updated. The matrix stores 

the count of appearances of the combination of two 

items in an interaction set. We processed these co-

concurrence counts with both jaccard and cosine 

similarity measures to fetch another item x item 

similarity matrix. This matrix is used to 

recommend the K most similar items for every 

item. 

 

B. Algorithm Steps 

 

I. Form the interaction sets by grouping the pairs of 

input user->item by user-id. 

II. Increment the corresponding element in co-

concurrency matrix for all the item<->item 

combinations in the interaction set. 

III. Calculate the item<->item similarity for all the 

combinations of item<->item in the co-concurrency 

matrix. 

IV. Fetch the K most similar items for every item 

in the corresponding output set. 

 

https://archive.ics.uci.edu/ml/datasets/Restaurant
https://archive.ics.uci.edu/ml/datasets/Restaurant


C. Incremental Collaborative Filtering Algorithm 

Steps: 

 

In this approach, we implemented a user-item 

similarity matrix that is updated using an 

incremental collaborative algorithm. The 

incremental item based algorithm that we proposed 

is for binary ratings. In case of non incremental 

approach the similarity matrix is constructed from 

time to time from the scratch. In the incremental 

approach, the similarity matrix is updated after 

each new session. Each incremental updates is 

necessary for affecting only the particular row of 

the similarity matrix under process. 

The algorithm takes in a database D of pairs < u; i> 

(user u saw the item i). It assumes of  

computing the similarity between pairs of items or 

users (similarity matrix S). It takes parameters Neib 

(number of neighbours to be found for a given 

user/item) and N (number of recommendations to 

be made). All the algorithms maintain a set of 

known Users and Items. The active user is denoted 

by Ua. 

 

Steps: 

1. Update Int.u and S 

2. Determine the activation weight of each item 

never seen by Ua and recommend the N items with 

highest activation weight. 

Let I be the set of items in the active session. The 

updating of Int.u and S is done as follows: 

1. Add Ua to Users and the session to D 

2. If Ua is a new user, a row and a column are 

added to Int.u and S . 

3. The row and column of Int.u corresponding to 

Ua are updated using the new D. 

4. Add new items in I to Items 

5. Update the row(column) of S corresponding to 

Ua using Int.u. 

The activation weight of an item for the user-based 

algorithm is W(i) = 

 

 
 

D. Jaccard and Cosine Similarity Index 

 

The Jaccard coefficient measures similarity as the 

intersection divided by the union of the objects. For 

text document, the Jaccard coefficient compares the 

sum weight of shared terms to the sum weight of 

terms that are present in either of the two 

documents but are not the shared terms. 

Mathematically it can be represented as -  

 

 
The Jaccard coefficient is a similarity measure and 

ranges between 0 and 1.  

The Cosine similarity measure can be defined as 

the computation of the similarity between two 

items is to treat each item as a vector and use the 

cosine measure between these vectors as a measure 

of similarity. 

Unlike Jaccard similarity measure, cosine similarity 

measure can also be applied to non-binary ratings. 

If R is the n × m user-item matrix, then the 

similarity between two items v and u is defined as 

the cosine of the n dimensional vectors 

corresponding to the vth and uth column of matrix 

R. The cosine between these vectors 

is given by the below equation (where ‘·’ denotes 

the vector dot-product operation). 

 

 
If the ratings are binary, they can be represented as  

 

          
 

E. Implementation details 

 

The proposed algorithm was implemented into 

code to test over the data set specified earlier.  

As the final result for the restaurant application is 

expected to be a web application, we implemented 

the algorithm and necessary data cleaning and data 

loading functionalities in the form of a web service 

application. The web application for the algorithm 

implementation and other related jobs was done 

with Ruby On Rails(ROR) web application 

framework. The algorithm was built into the ruby 

on rails as a gem file. The basic implementation of 

the algorithm is in Ruby. To support the scalability 

and efficiency over a large data, we used Redis key 

value pair NoSQL database. Our idea was to 

develop each item-item pair that creates a key value 

in redis. The value of item-item increment count is 

stored as the corresponding value for the item-item 

key. In this way we generate a sparse matrix. This 

saves a large amount of memory and processing 

time, considering the fact that the number of  seen 

item-item pairs is much less compared to the 

number of unseen item-item pairs. This 

implementation  brings down the complexity from 

O(n
3
) complexity to O(n). The same technique is 

used to store the similarity matrix, which saves 

spaces and increases scalability during incremental 

updation of items or recommendation generation. 

Ruby On Rails has an in built active record 

mechanism that helps in easy retrieval and updation 

of the data from this database setup. The loaded 

data is kept same such that the data may not be 

loaded each time when a recommendation request 

is processed. During this process we can either 

process the whole data together to create a 

similarity matrix or each row by row incrementally. 

Once the similarity matrix has been created, we can 



send an item to get recommendations for. The 

algorithm selects the top K similarity scores from 

the row corresponds to that item. This list of top K 

picks is the result of the algorithm. 

 

F. Experimental results and analysis 

 

From the top K items returned by algorithm, we 

check for hits. To get compare the accuracy, we use 

the recall parameter. The recall is calculated a s 

follows 

 

Recall = Number of hits / total number of users 

 

 
 

The result window as displayed on the part of the 

web application is as follows in the given diagram - 

 

 
 

 

 
 

 

III. MY CONTRIBUTIONS 
 

In this project I have at first cleaned the data set 

that is being downloaded from the UCI repository 

and then developed the incremental algorithm that 

is an item based collaborative filtering algorithm in 

Ruby. After that my duty was to interface the 

algorithm with the Redis database. I also made a 

comparative analysis of both the user based and 

item based approaches and calculated the 

recommendation time and rate of both the 

approaches using the restaurant - consumer dataset. 

Finally after the entire completion of the 

application I have debugged and tested application 

before it is submitted.  

 

IV. NEW SKILLS, TECHNIQUES OR 

KNOWLEDGE ACQUIRED 

 

While doing this project I learnt how to code using 

Ruby On Rails web application framework which I 

did not have experience before. Also I learnt how 

to simulate and interface the gem file that is 

obtained with the database by making the algorithm 

compatible. Also I gained the knowledge of Redis, 

a NoSQL database that works on the basis of a key 

value pair. So these are the technologies that I 

learnt while developing this project. 

 

V. CONCLUSION 

 

The proposed algorithm, on the experiment with 

restaurant data proved that, it could give descent 

item based recommendations based past user visits 

to the item or restaurants. The algorithm is 

configurable with any similarity measure. But our 

results show that the cosine similarity function 

performs better with the algorithm. The algorithm 

is disk efficient and scalable as it uses a sparse 

matrix implementation and the algorithm can be 

updated incrementally without recalculating the 

entire model. 

  

VI. TEAM MEMBERS 
 

1. Aritra Kumar Lahiri 

2. Ashish Mahajan 

3. Arun Scaria 

4. Pavan Kumar Akilla. 

 

 



VII. REFERENCES 

 

[1] Marko Balabanovic and Yoav Shoham. FAB: 

Content-based collaborative recommendation. 

Communications of the ACM, 40(3), March 1997. 

___ 

[2] Chumki Basu, Haym Hirsh, and William 

Cohen. Recommendation as classification: Using 

social and 

content-based infor- mation in recommendation. In 

Proceedings of the 1998 Workshop on 

Recommender 

Systems, pages 11–15. AAAI Press, 1998. ___ 

[3] 

DougBeefermanandAdamBerger.Agglomerativeclu

steringofasearchenginequerylog.InProceedingsofA

C 

MSIGKDD International Conference, pages 407–

415, 2000. ___ 

[4] D. Billsus and M. J. Pazzani. Learning 

collaborative information filters. In Proceedings of 

ICML, pages 

46–53, 1998. ___ 

[5] P. Chan. A non-invasive learning approach to 

building web user profiles. In Proceedings of ACM 

SIGKDD International ___Conference, 1999. ___ 

[6] N. Good, J. Scafer, J. Konstan, A. Borchers, B. 

Sarwar, J. Herlocker, and J. Riedl. Combining 

collaborative filtering with ___personal agents for 

better recommendations. In Proceedings of AAAI, 

pages 439– 

446. AAAI Press, 1999. ___ 

[7] W. Hill, L. Stead, M. Rosenstein, and G. 

Furnas. Recommending and evaluating choices in a 

virtual 

community of use. In ___Proceedings of CHI, 

1995. ___ 

[8] 

BrendanKitts,DavidFreed,andMartinVrieze.Cross-

sell:Afastpromotion-

tunablecustomeritemrecommendationmethod 

___based on conditional independent probabilities. 

In Proceedings of ACM 

SIGKDD International Conference, pages 437–

446, 2000. ___ 

[9] Miranda C. and Alipio J. (2008). Incremental 

collaborative filtering for binary ratings (LIAAD - 

INESC 

Porto, University of Porto) 

[10] George Karypis (2000) Evaluation of Item-

Based Top-N Recommendation Algorithms 

(University of 

Minnesota, Department of Computer Science / 

Army HPC Research Center) 

[11] Shiwei Z., Junjie W. Hui X. and Guoping X. 

(2011) Scaling up top-K cosine similarity search 

(Data & 

Knowledge Engineering 70) 

[12] R. Agrawal, T. Imielinski, A. Swami, Mining 

association rules between sets of items in large 

databases, 

Proceedings of the 1993 ACM SIGMOD 

International Conference on Management of Data, 

1993, pp. 207– 

216, Washington, DC. 

[13] C. Alexander, Market Models: A Guide to 

Financial Data Analysis, John Wiley & Sons, 2001. 

[14] A. Arasu, V. Ganti, R. Kaushik, Efficient 

exact set-similarity joins, Proceedings of the 32th 

International Conference on Very Large Data 

Bases, 2006. 

[15] A. Awekar, N.F. Samatova, P. Breimyer, 

Incremental all pairs similarity search for varying 

similarity 

thresholds, Proceedings of the 3rd Workshop on 

Social 

Network Mining and Analysis, 2009. 

[16] J. Blanchard, F. Guillet, R. Gras, H. Briand, 

Using information-theoretic measures to assess 

association 

rule interestingness, Proceedings of the Fifth IEEE 

International Conference on Data Mining, 2005, 

pp. 66–73, Houston, TX. 

[17] S. Brin, R. Motwani, C. Silverstein, Beyond 

market basket: generalizing association rules to 

correlations, Proceedings of the 1997 ACM 

SIGMOD International 

Conference on Management of Data, 1997, pp. 

265–276, Tucson, AZ. 

[18] S. Chaudhuri, V. Ganti, R. Kaushik, Efficient 

set joins on similarity predicates, Proceedings of 

the 

ACM SIGMOD International Conference on 

Management of 

Data, 2004. 

[19] Asmuth Paul, The recommender gem Skelton 

code. 

https://github.com/paulasmuth/recommendify. 

[20] S. Chaudhuri, V. Ganti, R. Kaushik, A 

primitive operator for similarity joins in data 

cleaning, 

Proceedings of the 22th International Conference 

on Data Engineering 2006. 

 

 


